基于时间—高斯混合模型的刀具磨损预测
2018-10-19
作者:黄文1,鲁娟1,2,马俊燕1,李康1,廖小平1,周刚1
单位:1广西大学;2钦州学院
摘要:连续刀具磨损过程的预测对实现自适应控制和优化制造工艺、提高生产效率和质量起着重要作用。为最大化描述磨损数据内在关系和提高预测模型精度,提出一种基于时间—高斯混合模型的刀具磨损建模方法,即采取将刀具磨损时间序列数据分成线性和非线性结构的策略,时间序列用来描述数据的线性相关趋势,非线性的异构部分则进行高斯过程回归建模。通过与现有的单一模型对比,结果表明该混合模型能对刀具磨损进行有效的预测,而且具有更高的预测精度。
关键词:DEFORM-3D仿真;刀具磨损;时间序列;高斯过程回归;混合模型
中图分类号:TG51;TH161文献标志码:A
Prediction of Tool Wear Based on Timegaussian Hybrid Model
Huang Wen,Lu Juan,Ma Junyan,Li Kang,Liao Xiaoping,Zhou Gang
Abstract:The prediction of continuous tool wear process plays an important role in achieving adaptive control and optimizing the manufacturing process,improving production efficiency and quality.To describe the inherent relationship among wear data and improve prediction accuracy,a method of tool wear modeling based on Timegaussian mixture model is proposed,which is a strategy to divide the tool wear time series data into linear and nonlinear structures.The time series is used to describe the linear trend,then The nonlinear heterogeneity is modeled using Gaussian process regression.DEFORM3D software simulated the turning process and obtained tool wear data.Compared with the existing single model,the results show that the hybrid model can effectively predict the tool wear,and has higher prediction accuracy.
Keywords:DEFORM3D simulation;tool wear;time series;Gaussian process regression;hybrid model