基于BP-RBF神经网络的刀具寿命预测模型研究
2020-12-24
作者:方喜峰1,2,张杰1,程德俊1,张胜文1 单位:1江苏科技大学;2江苏省先进制造技术重点实验室
摘要:对影响刀具寿命的因素进行分析,确定了影响刀具寿命的主要影响因素,建立基于BPRBF神经网络的刀具寿命预测模型;对刀具试验寿命数据样本进行统计,采用最小二乘法对刀具寿命预测数学模型进行非线性拟合,建立试验刀具寿命模型。通过十折交叉验证方法对BPRBF神经网络模型和传统BP神经网络模型进行试验仿真,结合刀具寿命数据样本对刀具寿命模型进行验证。通过与传统BP神经网络模型和刀具寿命预测模型对比可得:BPRBF神经网络具备更高的预测精度,该预测模型在刀具寿命预测上具备有效性。
关键词:BPRBF神经网络;BP神经网络;刀具寿命模型;十折交叉验证法
中图分类号:TG71;TH164文献标志码:ADOI:10.3969/j.issn.1000-7008.2020.12.014
Research on Tool Life Prediction Model Based on BPRBF Neural Networks
Fang Xifeng, Zhang Jie, Cheng Dejun, Zhang Shengwen
Abstract:Based on the traditional tool life prediction formula, the main influencing factors of tool life are determined through the analysis of the influencing factors of tool life, and a tool life prediction model based on BPRBF neural network is established; the tool life data samples of experiments are counted, the least square method is used to nonlinearly fit the mathematical model for establishing the experimental tool life model.The BPRBF neural network model and the traditional BP neural network model are tested and simulated through a 10fold crossvalidation method, and the tool life data samples are combined to verify the established tool life model.By comparing with the traditional BP neural network model and tool life prediction model, the BPRBF neural network has higher prediction accuracy, and the prediction model is effective in tool life prediction.
Keywords:BPRBF neural network;BP neural network;tool life model;tenfold cross validation method